Explaining instance classifications with interactions of subsets of feature values
نویسندگان
چکیده
In this paper, we present a novel method for explaining the decisions of an arbitrary classifier, independent of the type of classifier. The method works at the instance level, decomposing the model’s prediction for an instance into the contributions of the attributes’ values. We use several artificial data sets and several different types of models to show that the generated explanations reflect the decision-making properties of the explained model and approach the concepts behind the data set as the prediction quality of the model increases. The usefulness of the method is justified by a successful application on a real-world breast cancer recurrence prediction problem.
منابع مشابه
Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملIFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF
Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...
متن کاملFeature Selection Using Multi Objective Genetic Algorithm with Support Vector Machine
Different approaches have been proposed for feature selection to obtain suitable features subset among all features. These methods search feature space for feature subsets which satisfies some criteria or optimizes several objective functions. The objective functions are divided into two main groups: filter and wrapper methods. In filter methods, features subsets are selected due to some measu...
متن کاملFuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملExplaining the effective features of open and semi-open spaces in availability and increase of social interactions in residential complexes
By increasing house demand for living, the urban development planning has turned to towers, which provides a platform for the growth of the city, regardless of the traditional Iranian's architecture. Among the vital elements in traditional architecture, there are a variety of open and semi-open spaces such as the central courtyard, pool, veranda, balcony, etc that have been provided the needs f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Data Knowl. Eng.
دوره 68 شماره
صفحات -
تاریخ انتشار 2009